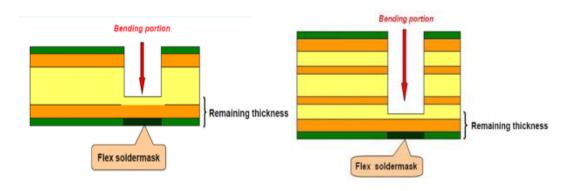


Semi-Flex PCB Technology

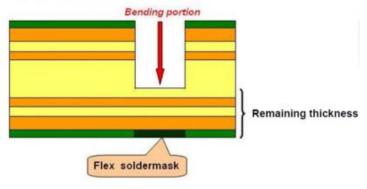
Updated in Oct. 2024

1 Semi-Flex PCB Types

2 Semi-Flex PCB Advantage and Application

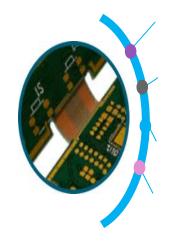

Contents

- 3 UG Semi-Flex PCB Technology Development
- 4 UG Semi-Flex PCB Capability
- 5 UG Semi-flex PCB Product


1. Semi-Flex PCB Types

The base material used in a semi-flex PCB is FR4. A semi-flex PCB is made by thinning a portion of a rigid FR4 PCB down to make it bendable up to a certain degree, while maintaining its structural integrity.

One Conductive Layer at bending area


Two Conductive Layer at bending area

2. Semi-Flex PCB Advantage and Application

Cost Efficient

Made only from FR4, FR4 Semi-Flex replaces 2 or more PCBs, simplifies the assembly process, eliminates connectors, and is cheaper than the Rigid-Flex solution

Reliability and Durability

Fewer solder joints and fewer connectors

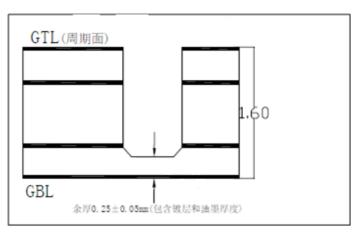
Size Optimization

Using FR4 Semi-Flex optimizes the PCB size, saving the space of the connectors on both "rigid" parts.

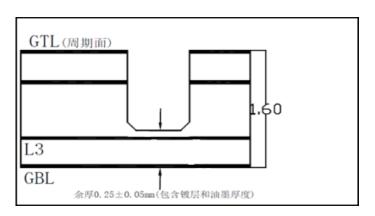
Special Installation Performance

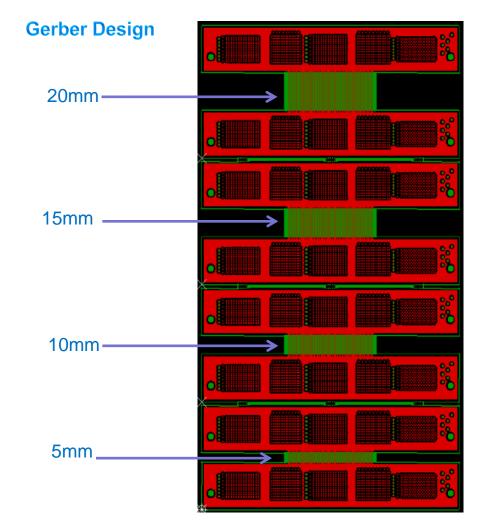
Can be locally bent on the basis of rigid PCB, which can not only provide the support of rigid PCB, but also achieve local bending according to product requirements.

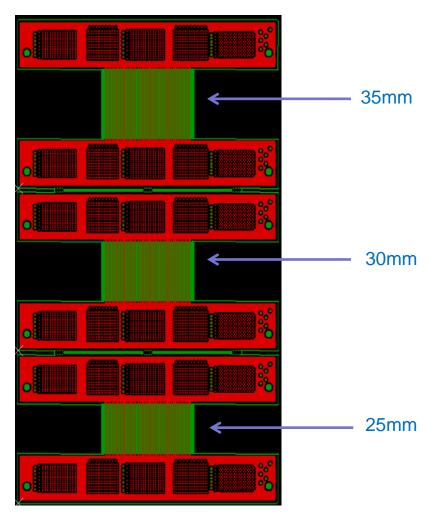
2. Semi-Flex PCB Advantage and Application

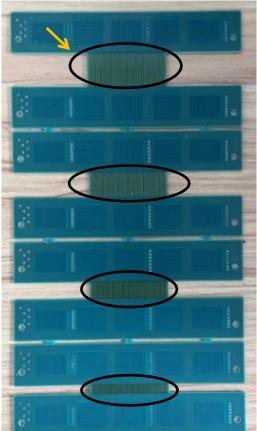

Semi-flex PCB are mainly used at situation that the bending status will be fixed after assembly. Only rework or repair may result in repeat bending. Under such a situation, semi-flex PCB might be an cost down solution if design can support.

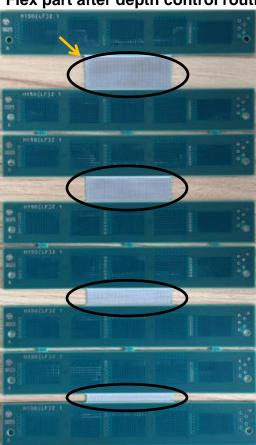
3.1 Test Board Design Information



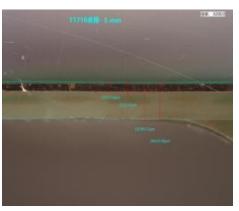

Remaining Thickness: 0.25+/-0.0mm


				外部長	ŧλ	4:	左翻页 ▶ 右翻页	
图示	上层	下层	连通	上残铜	下残铜	代号	规格	数量
	Li					CV0078	HOZ 宽幅51inch/1295m	1
						PP0916	106 RC70% 49.5*300m	1
						PP0916	106 RC70% 49.5*300m	1
	12	L3		50	64	NC2537	FR4 1.30mm 2/2 41*49	1
						PP0916	106 RC70% 49.5*300m	1
						PP0916	106 RC70% 49.5*300m	1
	L4					CV0078	HOZ 宽幅51inch/1295m	1

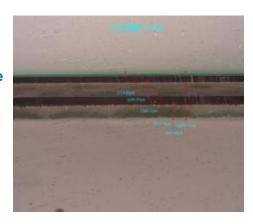



3.2 Semi-flex PCB Critical Control—Depth Control at Bending Area

"Flex" part,


flex solder mask at bottom side

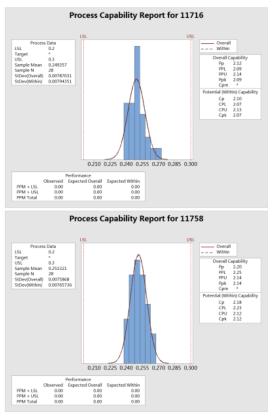
Flex part after depth control routing

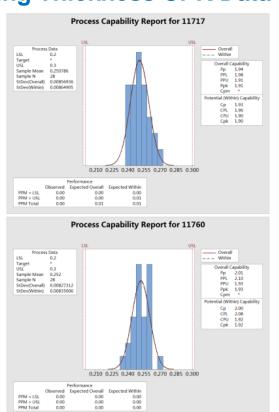


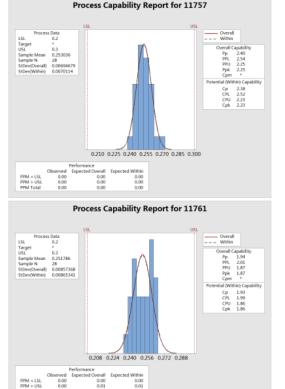
Cross Section of Bending Area

Two conductive layer

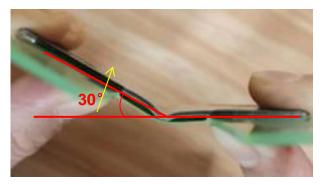
One conductive layer

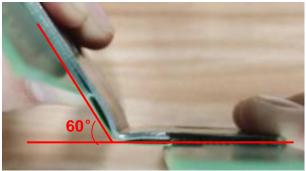

3.3 Bending Area Remaining Thickness CPK Data

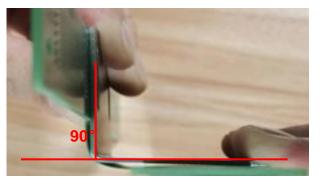

☆ 厚 (0.35 : 0.05 ········)	料号							
余厚(0.25±0.05mm)	11716	11717	11757	11758	11760	11761		
1	0.243	0.253	0.246	0.256	0.260	0.264		
2	0.250	0.267	0.252	0.249	0.251	0.263		
3	0.251	0.253	0.245	0.247	0.259	0.259		
4	0.254	0.260	0.256	0.254	0.254	0.261		
5	0.269	0.270	0.262	0.259	0.269	0.258		
6	0.266	0.264	0.257	0.267	0.261	0.263		
7	0.258	0.257	0.265	0.261	0.253	0.256		
8	0.248	0.252	0.252	0.242	0.243	0.245		
9	0.249	0.255	0.268	0.258	0.235	0.252		
10	0.256	0.248	0.258	0.262	0.238	0.260		
11	0.252	0.245	0.256	0.264	0.256	0.249		
12	0.255	0.238	0.248	0.256	0.258	0.248		
13	0.248	0.244	0.256	0.255	0.262	0.256		
14	0.245	0.255	0.253	0.248	0.248	0.252		
15	0.238	0.248	0.254	0.249	0.250	0.262		
16	0.245	0.242	0.262	0.256	0.252	0.260		
17	0.252	0.240	0.258	0.252	0.260	0.258		
18	0.260	0.258	0.245	0.255	0.249	0.252		
19	0.249	0.245	0.252	0.248	0.248	0.255		
20	0.248	0.252	0.260	0.245	0.245	0.248		
21	0.245	0.239	0.249	0.238	0.260	0.245		
22	0.242	0.238	0.248	0.246	0.262	0.238		
23	0.238	0.245	0.245	0.238	0.252	0.245		
24	0.243	0.252	0.252	0.243	0.255	0.238		
25	0.239	0.260	0.255	0.244	0.248	0.236		
26	0.248	0.249	0.248	0.252	0.245	0.240		
27	0.238	0.248	0.245	0.248	0.238	0.242		
28	0.253	0.245	0.238	0.245	0.245	0.245		
最小值	0.238	0.238	0.238	0.238	0.235	0.236		
最大值	0.269	0.270	0.268	0.267	0.269	0.264		
Cpk	2.07	1.90	2.23	2.12	1.92	1.86		


^{***}The above data show value ranges within 0.235mm-0.270mm, max difference is 0.035mm, this verifies that machine capability can meet ± 0.05 mm requirement.

3.3 Bending Area Remaining Thickness CPK Data


PPM Total


Remark: The Cpk data show remaining thickness at bending area can meet requirement.



3.4 Bending Test

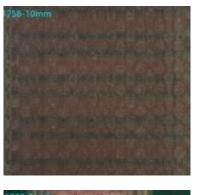
As illustrated below, use mold with 30° \checkmark 60° \checkmark 90° and 120° to test.

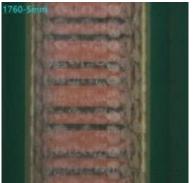
Test method: First, press one side of the pcb tightly against the mold, bend another part of PCB from horizontal line tightly against the other side of the mold by hand, as shown in the above figure,

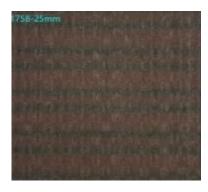
3.4 Bending Test

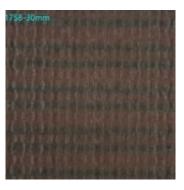
<u> </u>		unig i	001									
Item	PN	Laminate	Conductive Layer	Remain thickness part prepreg structure	Bending Angle	5mm	10mm	15mm	20mm	25mm	30mm	35mm
			One		30°	40/45	50+/50	50	50	50	50	50
	44740		Conductive	Copper	60°	32/33	50+/50	50	50	50	50	50
1	11716		layer	+2116+1080	90°	20/18	35/38	50	50	50	50	50
		۸			120°	0	20	36	50	50	50	50
		Α	Ture	Carrant	30°	25/29	50+/50	50	50	50	50	50
2	11717		Two	Copper+ 106+106+ 20Z	60°	7/16	50+/50	50	50	50	50	50
2	11717		Conductive layer	copper +106	90°	0/5	15/20	50	50	50	50	50
			layer	copper +100	120°	0/0	8	16	50	50	50	50
			One	Copper +	30°	38/42	50+/50	50	50	50	50	50
3	11757	Conductive layer	Conductive		60°	30/35	50+/50	50	50	50	50	50
3	11737		layer		90°	15/8	50+/50	50	50	50	50	50
		В			120°	0	32	40	50	50	50	50
		D	Two	Copper +	30°	22/26	50+/50	50	50	50	50	50
4	11760		Conductive	106+106+copper	60°	8/11	50+/50	50	50	50	50	50
	11700			+106	90°	0/0	50+/50	50	50	50	50	50
			, 0.		120°	0	15	28	50	50	50	50
			One		30°	32/38	50+/50	50	50	50	50	50
5	5 11758	Conductive Copper + 2116-	Copper + 2116+	60°	11/14	50+/50	50	50	50	50	50	
			1080+	90°	0/0	50+/50	50	50	50	50	50	
		С		120°	0	10/12	22	50	50	50	50	
			Two Copper +	30°	13	33	50	50	50	50	50	
6	11761			106+106+2 OZ	60°	2/4	14/16	50	50	50	50	50
		layer	copper +106	90°	0/0	0/0	50	50	50	50	50	
			,	-FF	120°	0/0	0/0	13	50	50	50	50

Remark: the bending result is judged by people.


3.4 Remarks to The Bending Test

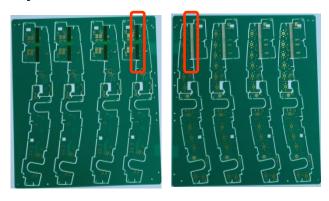

- 1. Pass bending test judgement : no sound was heard during bending, no crack was visually found with naked eyes after bending.
- 2. Bending times is much lowered for bending width 5mm and 10mm compared with 15mm; the smaller the bending angle, the more bending times it can support.
- 3. Prepreg type in bending part is critical to bending performance. In case a double-sided PCB most probably consisting of 7628 prepregs, the bending performance would be worse than the remain part consisting of thinner prepreg type such as 2116, 1080 or 106. Need to increase the bending length, ie. Bending radius to improve bending angle.


4. Bending test is assisted with a tool. In theory, the bigger radius, the less negative impact to bending result. The bending tools was not precisely made so the bending direction was set to match the tools. In a real design, an effective supporting to the bending area while bending is of big help.


3.4 Glass Fiber Appearance Checking after Bending

The status after bending test: no break or crack was found on laminate surface by naked eyes.

4. UG Semi-Flex PCB Capability



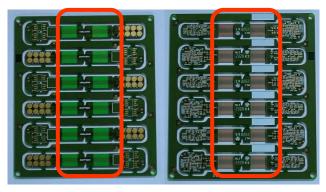
Semi-Flex PCB Control Points	Semi-Flex PCB Technology Capability
Layer Count	≤16L, bending area with 1-2 conductive layer
Material	FR4 + Flex solder mask
Remaining Thickness and tolerance at Bending Area	0.25mm+/-0.05mm.
Bending Capability	bending angle and times are decided by remain thickness, prepreg type in the bending part and bending length. This need to be tested case by case.
Surface Finishing	OSP, ENIG, Gold finger, Immersion Ag, Immersion Tin, HASL

Semi-Flex PCB				
Layer Count	4L (11404)			
Application	Automotive Armrest Side winder Pxxx			
Bending Portion Conductive Layer	1			
Bending Angle	24°,5 times max			
Bending Width	5+/-0.1mm			
Remaining Thickness	0.25±0.05mm			
Laminate Type	S1000H			
Bending Portion Solder Mask Type	PSR-9000 FLX501			
Bending Area PP Type and Structure	1080+2116			

Physical Board

Micro section

bended picture

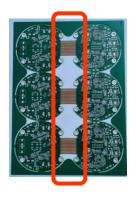


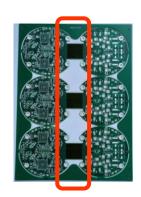
Actual test at about 24°

Semi-Flex PCB				
Layer Count	4L(11694)			
Application	Chassis Control System			
Bending Portion Conductive Layer	1			
Bending Angle	90°, 10times max			
Bending Width	10.56+/-0.15mm			
Remaining Thickness	0.20±0.1			
Laminate Type	S1000H			
Bending Portion Solder Mask Type	PSR-9000 FLX501			
Bending Area PP Type and Structure	1080+2116			

Physical Board

Micro section



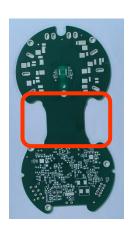


Semi-Flex PCB				
Layer Count	8L (10176)			
Application	Car Steering System Bxxx Hxxxx STEEING SYSTEMS			
Bending Portion Conductive Layer	2			
Bending Angle	90°, 5times max			
Bending Width	29.1+/-0.2mm			
Remaining Thickness	0.3±0.05mm			
Laminate Type	IT158			
Bending Portion Solder Mask Type	PSR-4000 MH			
Bending Area PP Type and Structure	1027			

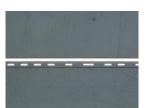
Physical Board

Micro section

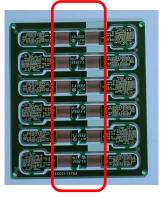
bended picture

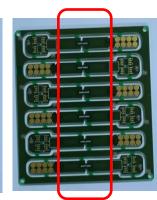


Semi-Flex	x PCB
Layer Count	8L(12719)
Application	Car Steering System – Gxxxx Wxxx
Bending Portion Conductive Layer	2
Bending Angle	90° , 50 times max
Bending Width	34.0+/-0.1mm
Remaining Thickness	0.25+/-0.05mm
Laminate Type	S1000H+ Semi-Flex material
Bending Portion Solder Mask Type	PSR-9000 FLX501
Bending Area PP Type and Structure	1080


Physical Board

Micro section


bended picture

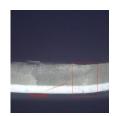


Semi-Flex PCB				
Layer Count层数	4 L(11776)			
Application	Chassis Control System			
Bending Portion Conductive Layer	1			
Bending Angle	90°, 10times max			
Bending Width	10.56+/-0.15mm			
Remaining Thickness	0.20±0.1			
Laminate Type	S1000H			
Bending Portion Solder Mask Type	PSR-9000 FLX501			
Bending Area PP Type and Structure	1080+2116			

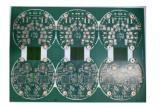
Micro section

Semi-Flex PCB				
Layer Count	2L(13435)			
Application	Automotive Application ICAPE			
Bending Portion Conductive Layer	1			
Bending Angle	7.87°, required 5times max			
Bending Width	3.0+/-1.0mm			
Remaining Thickness	0.22-0.24mm			
Laminate Type	SB170G			
Bending Portion Solder Mask Type	PSR-9000 FLX501			
Bending Area PP Type and Structure	7628			

Physical Board



Micro section



Semi-Flex	PCB
Layer Count	8L (15219)
Application	Automotive Application
Bending Portion Conductive Layer	1
Bending Angle	180°
Bending Width	30
Remaining Thickness	Max: 0.28mm
Laminate Type	IT-158
Bending Portion Solder Mask Type	PSR-9000 FLX501
Bending Area PP Type and Structure	1027

Physical Board

